
Estimating error rates for firearm evidence identifications in forensic

science

John Songa, Theodore V. Vorburgera,*, Wei Chua, James Yenb, Johannes A. Soonsa,
Daniel B. Otta, Nien Fan Zhangb

a Engineering Physics Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
b Statistical Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA

A R T I C L E I N F O

Article history:

Received 21 July 2017

Received in revised form 6 November 2017

Accepted 6 December 2017

Available online 13 December 2017

Keywords:

Forensics

Firearm

Ballistics identification

Error rate

Congruent matching cell

CMC

A B S T R A C T

Estimating error rates for firearm evidence identification is a fundamental challenge in forensic science.

This paper describes the recently developed congruent matching cells (CMC) method for image

comparisons, its application to firearm evidence identification, and its usage and initial tests for error rate

estimation. The CMC method divides compared topography images into correlation cells. Four

identification parameters are defined for quantifying both the topography similarity of the correlated cell

pairs and the pattern congruency of the registered cell locations. A declared match requires a significant

number of CMCs, i.e., cell pairs that meet all similarity and congruency requirements. Initial testing on

breech face impressions of a set of 40 cartridge cases fired with consecutively manufactured pistol slides

showed wide separation between the distributions of CMC numbers observed for known matching and

known non-matching image pairs. Another test on 95 cartridge cases from a different set of slides

manufactured by the same process also yielded widely separated distributions. The test results were used

to develop two statistical models for the probability mass function of CMC correlation scores. The models

were applied to develop a framework for estimating cumulative false positive and false negative error

rates and individual error rates of declared matches and non-matches for this population of breech face

impressions. The prospect for applying the models to large populations and realistic case work is also

discussed. The CMC method can provide a statistical foundation for estimating error rates in firearm

evidence identifications, thus emulating methods used for forensic identification of DNA evidence.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Tool marks are permanent changes in the topography of a

surface created by forced contact with a harder object (the tool).

When bullets and cartridge cases are fired or ejected from a

firearm, the parts of the firearm that make forcible contact with

them create characteristic tool marks called “ballistic signatures”

[1]. By examining these ballistic signatures side-by-side in a

comparison microscope, firearm examiners can determine wheth-

er a pair of bullets or cartridge cases was fired or ejected from the

same firearm. Firearm examiners can then connect a recovered

firearm or other firearm evidence to criminal acts.

Successful identification requires that the relevant firearm

surfaces have individuality and that the tool marks are reproduc-

ible [1]. In general, tool marks have so-called “class characteristics”

that are common to certain firearm designs and manufacturing

methods, and “individual characteristics” arising from random

variations in firearm manufacturing and wear [1]. While class

characteristics can be used to exclude a firearm as a source of a

recovered cartridge case or bullet, the patterns of individual

characteristics are often unique to individual firearms and can

therefore form the basis for identification [1]. These individual

characteristics are marks produced by the random imperfections

or irregularities of the firearm surfaces, which may arise during

manufacture or by corrosion or damage during use [2]. In

mechanical engineering terms, individual characteristics are

approximately equivalent in scale to surface roughness irregulari-

ties [3].

Side-by-side tool mark image comparisons for firearm identifi-

cation have a history of more than a hundred-years [1]. However,

the scientific foundation of firearm and tool mark identification

has been challenged by recent reports and court decisions. As

stated in a 2008 National Academies Report [4], “The validity of the

fundamental assumptions of uniqueness and reproducibility of
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firearms-related tool marks has not yet been fully demonstrated . . . ”

and “Since the basis of all forensic identification is probability theory,

examiners can never really assert a conclusion of an ‘identification to

exclusion of all others in the world,’ but at best can only assert a very

small (objective or subjective) probability of a coincidental match.”

The legal standard for the acceptance of scientific evidence

contained in the U.S. Supreme Court decision, called the Daubert

standard [4], “places high probative weight on quantifiable evidence

that can be tested empirically and for which known or potential error

rates may be estimated, such as identification using DNA markers” [4].

However, as stated in a 2009 National Academies Report [5], “But

even with more training and experience using newer techniques, the

decision of the toolmark examiner remains a subjective decision based

on unarticulated standards and no statistical foundation for

estimation of error rates.”

Since the 1980’s, estimates of coincidental match probability

(CMP) have been used for specifying uncertainty of DNA

identifications: “The courts already have proven their ability to deal

with some degree of uncertainty in individualizations, as demon-

strated by the successful use of DNA analysis (with its small, but

nonzero, error rate)” [5]. It is therefore a fundamental challenge in

forensic science to establish a scientific foundation and statistical

procedures providing quantitative error rate reports to support

firearm identifications, in the same way that reporting procedures

have been established for forensic identification of DNA evidence

[5]. Several experimental and theoretical efforts have been

pursued along this line including the computer learning approach

of Petraco et al. [6,7], the work on likelihood ratio by Riva and

Champod [8], the study of examiner error rates by Baldwin et al.

[9], the feature-based matching algorithm of Lilien [10,11], the

work on image cross correlation and congruent matching cells

(CMC) of Song et al. [12–17], and the random forest approach of

Hare et al. [18].

In this paper, we apply the CMC method [14–17] to estimations

of error rates for false identifications and exclusions for two sets of

topography image data of breech face impressions from fired

cartridge cases. We discuss the CMC method in Section 2, then

describe validation tests, error rate estimation procedures and

initial results in Sections 3–5, and provide observations about

future directions and the prospect for application to case work in

Section 6.

2. Congruent matching cells (CMC) method

We begin with pairs of measured 3D topography images of

breech face impressions whose similarity we wish to quantify (see

Fig. 1). A common approach would be to calculate the value of the

normalized cross-correlation function (Pearson’s correlation

coefficient) for the pair of images as a whole [12,13], when they

are registered at a position of maximum correlation. Instead, the

CMC method divides the reference image into a rectangular array

of cells as shown in Fig. 2. For each cell on the reference image, an

automated search is made on a compared image for a highly similar

region. The cell-by-cell analysis is done because a firearm often

produces characteristic marks, or individual characteristics [1], on

only a portion of the bullet or cartridge case surface, depending on

its degree of contact with the firearm during firing. Carrying over

the terminology from previous research in firearms identification

[14,15], a region of the surface topography is termed a “valid

correlation region” if it contains individual characteristics of the

ballistic signature that can be used effectively for firearm

identification. Conversely, a region of the surface topography that

does not contain individual characteristics of the firearm’s ballistic

signature is termed an “invalid correlation region” that should be

eliminated from consideration for firearm identification. Invalid

correlation areas can occur, for example, due to insufficient contact

between the firearm’s surface and the bullet or cartridge case

during firing.

If two ballistic topographies A and B originate from the same

firearm, both will likely contain valid and invalid correlation

regions. When A and B are compared with each other, their

common valid correlation region is the overlap of the individual

valid correlation regions of A and B, which comprise only part,

1 Certain commercial equipment, instruments, or materials are identified in this

paper to foster understanding. Such identification does not imply recommendation

or endorsement by the National Institute of Standards and Technology, nor does it

imply that the materials or equipment identified are necessarily the best available

for the purpose.

Fig. 1. Topography images of breech face impressions obtained from a pair of cartridge cases ejected from slide 3 in the Fadul data set [19] discussed here. The data set

consisted of test fires of Federal1 cartridges from consecutively manufactured Ruger 9 mm slides. The images have several features in common. The diameter of each image is

about 3.5 mm. The topography contrast is rendered with a virtual light source from the left.
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sometimes even a small part, of the entire areas of A and B. If a

quantitative measure of correlation is obtained from the entire

images of A and B, the correlation accuracy may be relatively low

because large invalid regions may be included in the correlation. If

the correlation areas are divided into cells, the valid correlation

regions may be analyzed without being combined with invalid

regions. The CMC procedure to identify cells containing valid

regions can significantly increase the correlation effectiveness and

accuracy. Furthermore, the use of a statistically large number of

congruently matched cells identified by multiple parameters can

facilitate the estimation of an error rate [15] from a well

characterized population.

A correlation cell is a rectangular sub-region of the surface

topography image that contains a sufficient quantity of distin-

guishing peaks, valleys, and other topographic features so that an

assessment of topography similarity can be made. If topographies

A and B originating from the same firearm are registered at their

position of maximum correlation (Fig. 3), the cell pairs located in

their common valid correlation regions can be identified, as shown

by the solid cell pairs located in (A1, B1), (A2, B2), and (A3, B3). These

cell pairs are necessarily characterized by [14,15]:

1) High pairwise topography similarity as quantified by a high

value of the normalized cross correlation function maximum

CCFmax;

2) Similar registration angles u for all correlated cell pairs in valid

regions A and B; and

3) “Congruent” x–y spatial distribution patterns for the correlated

cell arrays (A1, A2, A3 . . . ) and (B1, B2, B3 . . . ) or nearly so.

On the other hand, if the registered cell pairs are located in the

invalid correlation regions of A and B, such as the dotted cells (a0, a00,

a000) and (b0, b00, b000) in Fig. 3, or if they originate from different

firearms, their maximum cross correlation value CCFmax would be

relatively low, and their cell arrays would show significant variation

in their x–y distribution patterns and registration angles u.

Congruent matching cell pairs, or CMCs, are therefore deter-

mined by four dentification parameters for quantifying both the

topography similarity of the correlated cell pairs and the pattern

congruency of the cell distributions. The former is quantified by the

normalized cross correlation function maximum CCFmax with

threshold TCCF; the latter is quantified by the registration angle u

and translation distances in x and y with corresponding thresholds

Fig. 3. Schematic diagram of topographies A and B originating from the same firearm and registered at the position of maximum correlation. The six solid cell pairs in each

image are in three valid correlated regions (A1,B1), (A2, B2), and (A3, B3). The dotted cell pairs (a0, b0), (a00 , b00), and (a000 , b000) are in the invalid correlation region.

Fig. 2. Conceptual diagram of a topography image from Fig. 1 overlaid by a 7 � 7 grid, dividing the reference image (left) into cells. The drag mark at the 3 o’clock position in

Fig. 1 and the central hole and surrounding bulge from the firing pin impression are masked out. Only cells with a sufficient fraction of measured pixels are used for the

correlation analysis. Also shown is an illustration of the automated search procedure to find an area in the compared image (right) that has a strong correlation with one of the

cells in the reference image (left). Here the topography is represented by a color scale.
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Tu, Tx, and Ty. A correlated cell pair is considered a CMC — that is,

part of a congruent matching cell pattern — when its correlation

value CCFmax is greater than a chosen TCCF, and the registration

angle u and x, y registration positions are within chosen thresholds

Tu, Tx and Ty. The automated search and registration procedure is

performed for each individual cell in the reference image A, shown

for example in Fig. 2 (left), by scanning through compared image B

(right) for a suitable matching area that yields the highest CCF

value.

Fig. 4 shows typical results for CMC comparisons. The upper

diagrams (Fig. 4a) show a CMC comparison of two breech face

impressions from the same firearm. 24 out of 29 cells, outlined in

black, satisfy all the criteria discussed above and are counted as

CMC cells. That is, the cross correlation values between compara-

ble cells are above a chosen threshold and the 24-cell pattern on

the left is congruent with that on the right. Only five of the cell

pairs, outlined in red, do not satisfy all the CMC critera. The lower

diagrams (Fig. 4b) show a CMC comparison of breech face

impressions from different firearms. The cells in the right hand

image having the largest CCF, when compared with each cell in the

left hand image, do not form a pattern that is congruent with the

cell pattern on the left.

How many CMC pairs are required so that the two surface

topographies can be identified as matching? Ideally, this would be

determined after carefully designed experiments and error rate

estimations. Threshold values for identification of matching

topographies based on breech face impressions will doubtless

depend on many aspects of the firearms and the ammunition,

including the area of the impressed surface, the quality of the

impression marks left by the firing process, the manufacturing

method for the breech face resulting in roughness features that

form the impression, and the manufacturing method of the

cartridge case primer resulting in pre-fire roughness features that

can obscure the impression from firing. As a starting point for the

current population, we use a single identification criterion C, about

midway between distributions of matching and non-matching

pairs of images (see Fig. 6). We demonstrate that this criterion

works well for the tests that we present in the following sections.

After further studies, depending on target error rates for declared

matches and non-matches, the single criterion C may evolve into

two separated criteria. When applying similar algorithms to other

types of tool marks, such as firing pin impressions, different

criteria will likely be required [20]. Even for other types of breech

face impressions, C would be determined from the population

statistics and from estimated targets for error rates. Estimation of

error rates for a specific data set are discussed in Section 5.

3. Validation tests: materials and methods

Validation tests of the CMC method have been conducted

previously [15–17] using a set of cartridge cases originally created

by Fadul et al. [19] for a study of visual firearm identifications by

Fig. 4. Typical results for a CMC comparison of (a) breech face impressions from the same firearm and (b) breech face impressions from different firearms.
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ballistics examiners. The current test is intended mainly to

demonstrate the error rate procedure rather than to show

application to a real result from case work. The set contains

40 cartridge cases ejected from handguns with ten consecutively

manufactured Ruger 9 mm pistol slides. Three slides were used to

fire three cartridge cases each, four slides were used to fire four

cartridge cases each, and three slides were used to fire five

cartridge cases each. The slide is a component of a semi-automatic

pistol firing mechanism that absorbs the recoil impact of the

cartridge case on its breech face. Thus, the surface topography of

the slide’s breech face is impressed on the soft primer of the

cartridge case upon impact.

Comparisons involving a population of consecutively manufac-

tured firearm parts represent a challenging scenario for accurately

identifying bullets or cartridge cases as being fired or ejected from

the same firearm. Consecutively manufactured parts can have

similar topographic features arising from temporary imperfections

in the manufacturing process, such as a worn tool. The presence of

these sub-class characteristics can lead to false identifications [1].

For this studied set, the breech face was machined using a straight

pull step broach [19]. However, the manufacturer finished the

surfaces of the slides by sand and bead blasting, a process that

should produce random surface topographies [21] with clear

individual characteristics and mitigate the effect of sub-class

characteristics. The task then for topography measurement and

analysis is to distinguish the individual characteristics of the

surface impressions from any underlying similarities in consecu-

tively manufactured slides resulting from earlier phases of the

manufacturing process. The objective for this set of materials is to

draw a correct conclusion of match or non-match with error rate

estimation for any pair of topography images drawn from the

40 cartridge cases that were measured. In Section 6, we will discuss

the ultimate objective of extrapolating to larger databases and real

casework.

The breech face impression topographies on the cartridge cases

were measured by a disk scanning confocal microscope described

elsewhere [22]. Briefly, illumination from a white light source is

reflected from the surface under investigation and is focused onto a

pinhole aperture in the disk. If the surface is at the correct height,

the reflected light will be focused through the pinhole and a strong

optical signal will pass onto the detector. If the surface is not at the

correct height, the light arriving at the aperture will be out of focus

and little or no signal arrives at the detector. Scanning the surface

vertically enables one to determine the surface height at a single

lateral location by looking for a maximum in the light transmitted

to the detector. The disk contains a large number of pinholes, and

spinning the disk serves to provide a lateral scan over the surface.

The confocal microscope was operated with a 10� objective

having a numerical aperture of 0.3, a nominal working distance of

approximately 10.1 mm, and a field of view of approximately

1.6 mm � 1.6 mm, comprising 512 � 512 pixels. The topography

images of the entire breech face impressions were achieved by

stitching 3 � 3 fields of view and were approximately 3.9 mm

� 3.9 mm with approximately 1240 � 1240 pixels and a nominal

pixel spacing of 3.125 mm. The images were down sampled to a

pixel spacing of 6.25 mm to improve the speed of the subsequent

image correlations. The sample spacing in the vertical scan was

0.2 mm, but the vertical resolution limit of confocal microscopes is

significantly smaller than the vertical sample spacing because the

signal is interpolated to find a maximum. The root mean square

instrument noise was approximately 13 nm, tested by measuring

an optical flat at 10� with a long wavelength cutoff of 250 mm.

Before correlating, the images were manually trimmed to

extract the breech face impression of interest, yielding, on average,

an image size of 3.5 mm � 3.5 mm. Specifically, drag marks and

central firing pin impressions with any surrounding flow back

ridges are not considered as part of the breech face impression

(Fig. 1 vs. Fig. 2). The images were then bandpass filtered to

attenuate noise with short spatial wavelengths and attenuate

surface form and waviness with long wavelengths thus highlight-

ing individual characteristics. The short wavelength cutoff of the

Gaussian filter was 16 mm, and the long wavelength cutoff was

250 mm. Fig. 5 shows a topography image of a breech face

impression before and after trimming and filtering.

The topography images were correlated using the CMC method.

A total of 780 (=40 � 39/2) image correlations were performed,

comprising 63 (=3 � 3 + 4 � 6 + 3 � 10) known matching (KM) and

717 (=780 � 63) known non-matching (KNM) image pair compar-

isons. The images were divided into cell arrays. There is a trade-off

on the chosen cell size. Each cell should be large enough to include

a statistically large number of pixels, but there should also be

enough cells in the image to distinguish valid and invalid regions.

For these tests, the images were divided into arrays of 49 (=7 � 7)

cells. Each cell size for the set of correlation tests was chosen to be

Fig. 5. Color coded topography image of one of the breech face impressions before (left) and after (right) trimming, leveling, and filtering. The prominent annular ridge on the

left-hand image is due to flow back into the firing pin aperture. This feature is trimmed away in the right-hand image.
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75 � 75 pixels (nominally 468.75 mm � 468.75 mm), and the range

of cell registration angles was restricted to �30� with respect to

their initial orientation.

Although the nominal number, Nnom, of compared cell pairs for

each topography correlation equals 49, the actual number N of

effective cell pairs for each correlation depends on the number of

cells in the reference image that contain enough measured pixels

for effective correlation. For example, the empty center portion of

the surface shown in Fig. 5, corresponding to the firing pin

impression, leads to fewer effective correlation cells than Nnom. A

cell was not used unless at least 10% (approximately 563) of its

pixels represented measured data. For this study, the number of

evaluated cell pairs in a comparison ranged from 24 to 30, with an

average of 26.

One set of test results is shown in Fig. 6 [16]. The cell size a, the

pixel spacing, and the thresholds TCCF, Tu, Tx and Ty are shown on

the upper left side. The number of congruent matching cell pairs

(CMCs) for the 63 KM topography pairs ranges from 9 to 26; while

the number of CMCs for the 717 KNM topography pairs ranges from

0 to 2.

Of the 717 KNM topography pairs, 651 pairs have CMC = 0 (no

congruent matching cells). There are only five non-matching

topography pairs that have as many as two congruent matching

cells, i.e. CMC = 2 (Fig. 6); one of them is shown in Fig. 7A. For the

63 KM topography pairs, only one topography pair has a CMC

number as low as 9. This topography pair is shown in Fig. 7B. All the

other KM topography pairs have a CMC number ranging from 11 to

26 (Fig. 6). A close-up of one pair of matching cells from Fig. 7B, cell

A1 vs. cell B1, is shown in Fig. 8. Their topography similarity is

quantified by the maximum value of the normalized cross-

correlation function CCFmax = 67.6%.

The KM and KNM distributions of Fig. 6 show a significant

separation. Additional tests using slightly different versions of the

correlation software and different parameter values show similar

results without an overlap [16]. Tests performed with optical

intensity images of the breech face impressions, instead of 3D

topography images, also show similar results without any overlap

[17]. In standard binary classifier terms, these results indicate both

high sensitivity and specificity [23] for this data set.

The separation between matching and non-matching image

pairs shown in Fig. 6 can likely be improved further by designed

experiments to optimize the image processing, cell size, parameter

threshold values, and registration intervals. The focus here,

however, is on reporting an error rate from such results.

4. Error rate analysis and results

4.1. A statistical framework

We seek to develop an approach for estimating the expected

error rates of ballistic identifications based on the CMC method.

Error rates can be considered from two points of view [24,25]. The

first point of view addresses the reliability of the identification

procedure. This reliability can be expressed by the false positive

and false negative error rates for a given set of KM and KNM

samples. The false positive error rate (Fig. 9a) represents the

expected frequency or probability of obtaining an erroneous

result of identification (declared match) when comparing

samples from different sources (KNM). The false negative error

rate represents the probability of obtaining an erroneous result of

exclusion (declared non-match) when comparing samples from

the same source (KM). The false positive and false negative error

rates can be used as a measure of the reliability of the

identification procedure. In this paper, the false positive and

false negative error rates are represented by the “cumulative error

rates” E1 and E2 (see Eqs. (11) and (13)).

The second point of view addresses the probability of an

incorrect conclusion for an identification (declared match) or

exclusion (declared non-match). It represents the expected

frequency or error rate that a result of either identification or

exclusion is false (Fig. 9b). In this paper, false identification and

false exclusion error rates are represented by the “individual error

rates” R1 and R2, respectively (see Eqs. (14) and (15)). This way of

describing error rate is of interest during legal proceedings. For

example, when a firearms examiner concludes that the evidence

and reference items are from the same source, an attorney may

ask: “What is the probability that these two items are actually from

different sources?” However, error rates in this class depend not

only on the reliability of the identification procedure, but also on

the ratio of same-source image pairs to different-source image

pairs in the population of comparisons relevant to the case [8], or

(for this paper) relevant to the validation test (see Section 4.6).

Another way to describe this second point of view is with a

Bayesian approach, where the ratio of same-source to different-

source populations is cast as prior odds. Multiplying this factor by

the likelihood ratio [26,27,28] yields posterior odds, say, for a

declared match being correct. The likelihood ratio is the ratio of the

probabilities of obtaining a specific comparison result under the

competing hypotheses of same-source and different-source

samples. Thus, the likelihood ratio expresses the strength of the

obtained evidence irrespective of the prior odds. It can be

calculated from data and models such as those in Fig. 6.

In this paper, we calculate both the cumulative (false positive

and false negative) error rates E1 and E2, and the individual (false

identification and false exclusion) error rates R1 and R2 from the

distributions obtained with the CMC method. Thus, the cumulative

false positive error rate E1 (Eq. (11)) represents the probability of

obtaining a CMC score larger than or equal to the identification

criterion C, when comparing samples from different sources

(KNM). Alternatively, for a specific CMC comparison score, we

calculate individual error rates of identifications R1 (Eq. (14)) and

exclusions R2 (Eq. (15)). For example, when CMC = 15, the

individual identification error rate R1 represents the probability

that an identification based on a CMC score of 15 is a falsely

declared match.

Fig. 6. Relative frequency distribution of image pairs vs. CMC number for 63 KM and

717 KNM image pairs. The KM and KNM distributions are each scaled to their

sample size. The red and brown curves represent binomial and beta binomial

distribution models, respectively, for the KM data, estimated by Eqs. (8) and (9),

respectively. The overlapping blue curves represent the two models for the KNM

data (see Section 4). Note that the distribution models are discrete, with the

connecting lines drawn for visualization. The number of image pairs having a

particular CMC value is shown just above each bar in the histograms.
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The large number of cell correlations associated with the CMC

method using multiple identification parameters facilitates a

statistical approach to modeling error rates. The CMC method is

based on pass-or-fail tests of individual cell pairs comprising an

image pair of breech face impressions. In this section, we develop

statistical models for the probability distribution of the number of

successful tests in a comparison, i.e., the CMC numbers of KM and

KNM comparisons. After estimating model parameters from

experimental results for KM and KNM comparisons, the models

are applied to estimate potential error rates.

Fig. 7. Depiction of congruent matching cells for two correlated topography pairs. For the 717 KNM topography pairs, only five pairs have a CMC value as high as 2; one of these

image pairs is shown in (A). For the 63 KM topography pairs, only one has a CMC value as low as 9; that pair is shown in (B). The cell pattern A1–A9 on the left of Fig. 7B is

congruent with the cell pattern B1–B9 on the right. The filtered surface topographies of the breech face impressions are depicted by the color scale of the diagram.

Fig. 8. Topography comparison of KM cell pair A1 and B1 from the KM image pair of Fig. 7B. Common topography features are apparent. The normalized correlation value,

CCFmax, is 67.6 %.
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4.2. A binomial probability model for the distribution of CMCs

For a pair of images, N represents the number of correlated cell

pairs. If, for example, there are 49 cells in the array of the reference

image (Nnom = 49) but nine of those have an insufficient fraction of

pixels with measurement values, then N is reduced to 40. For a

given correlated cell pair, a random variable X represents the

outcome of the CMC method for that cell pair. When the CMC

method determines that the cell pair is part of the set of congruent

matching cells, i.e. when its correlation value CCFmax is greater than

a chosen threshold TCCF and the registration angle u and x, y

registration positions are within the chosen threshold limits Tu, Tx
and Ty, then X = 1; otherwise X = 0. We use the symbol P to

represent probability in general and the symbol p to represent the

probability that X = 1. That is, P(X = 1) = p, and P(X = 0) = 1 � p.

We now make two key approximations that will be revisited in

later sections: (1) the comparisons between cell pairs are

independent from each other, and (2) each cell pair comparison

for the KNM images has the same probability p = pKNM to qualify as

a CMC and each cell pair comparison for the KM images has the

same probability p = pKM to qualify as a CMC. Thus, for the first

image pair with N1 correlated cell pairs, we have a sequence of

Bernoulli trials [29], X11; :::; X1N1
, which are independent from each

other but have a common probability, pKNM or pKM. We denote the

number of successful trials, the CMC number, for the first image

pair by Y1. That is, Y1 ¼
X

N1

i¼1

X1i. Under the stated assumptions, Y1 is a

binomially distributed random variable [29], namely, Y1� Bin (N1,

p). The functional form of Bin is shown later in Eq. (7). Similarly, for

M KNM or KM image pairs, we have Y1, . . . ,YM. Assuming that{Yj,

j = 1, . . . , M} are independent from each other, we have a sequence

of binomially distributed random variables, Y j ¼
X

Nj

i¼1

Xji, for

j = 1,..., M and Yj� Bin (Nj, p). In addition, we can state

X

M

j¼1

Y j � Binð
X

M

j¼1

Nj; pÞ: ð1Þ

For observed values of {Yj, j = 1, . . . , M}, the maximum

likelihood estimator of p is given by [30]:

p̂ ¼

X

M

j¼1

Y j

X

M

j¼1

Nj

¼

X

M

j¼1

X

Nj

i¼1

Xji

X

M

j¼1

Nj

ð2Þ

Therefore, for the sub-population of KNM image comparisons,

the false positive cell probability, denoted by pKNM, is the

probability that a KNM cell pair comparison results in a CMC.

Likewise, for the sub-population consisting of KM image pairs, the

false negative cell probability is denoted by (1 � pKM).

To estimate pKNM and pKM from the data, we apply Eq. (2) to the

sub-population of 717 KNM image pairs and the sub-population of

63 KM image pairs. For each sub-population, we estimate p by

counting all the CMC cell pairs that pass the four threshold criteria

for a match:

p̂KNM ¼
Number of KNM CMC cell pairs

Total number of evaluated KNM cell pairs
; ð3aÞ

p̂KM ¼
Number of KM CMC cell pairs

Total number of evaluated KM cell pairs
: ð3bÞ

Fig. 9. Two points of view for describing error rates for firearms identifications.
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For the test results depicted in Fig. 6, the estimates obtained

from Eq. (3) are:

p̂KNM ¼ 71=18859 ¼ 0:003765;

p̂KM ¼ 1207=1628 ¼ 0:7414:

It is also instructive to plot the experimental frequency

distributions of registered KM and KNM cell pairs with respect

to each CMC identification parameter to observe how the overlap

between KM and KNM cell pairs is eliminated when all four

identification parameters are combined. By this method, the value

of p̂KNM and p̂KM can also be calculated with the same results (see

Appendix A).

To evaluate the model, we compare the observed frequency of

correlations as a function of CMC number to the respective

modeled frequency. For KNM correlations, the observed frequency

distribution is obtained as:

f KNM CMC ¼ hð Þ

¼ Number of KNM image pair correlations with CMC¼h
Total number of KNM image pair comparisons

:

In Fig. 6, the observed frequency distribution is depicted by the

blue histogram. The respective modeled frequency distribution,

depicted by the blue curve, is obtained as:

^f KNM CMC ¼ hð Þ

¼
X

M

j¼1

BinðhjNj; p̂KNMÞ= Total Number of KNM correlationsð Þ;

where the summation of the binomial probability values is

performed over all KNM comparisons. If all correlations have

the same number of evaluated cells N, Eq. (6) would be simplified

to:

^f KNM CMC ¼ hð Þ ¼ BinðhjN; p̂KNMÞ ¼ Ch
N�p̂

h
KNM� 1 � p̂KNMÞ

N�h
;

�

ð7Þ

where the binomial coefficient Ch
N is the number of possible

combinations of h out of N elements.

Likewise, for KM image correlations, the modeled distribution,

depicted by the red curve in Fig. 6, is:

^f KM CMC ¼ gð Þ ¼ BinðgjN; p̂KMÞ ¼ Cg
N�p̂

g
KM� 1 � p̂KMÞ

N�g
:

�

ð8Þ

4.3. Re-assessing the binomial model

The binomial model described above contains the assumption

that a single value (pKNM) characterizes the probability that a pair

of cells from KNM images will pass all criteria and qualify as a false

positive CMC cell pair. The resulting model fits the KNM data quite

well (see Fig. 6, blue line), and theoretically, we expect the use of a

single false positive cell probability pKNM to be a good approxima-

tion for KNM data. If two cells were from images of breech face

impressions from different firearms, the fact that they appear to

qualify as a CMC cell pair is likely driven by random, non-selective

factors as long as subclass characteristics, the carry-over of pre-fire

tool marks, and systematic measurement errors are not significant

factors in the evaluation.

The situation is more complicated for cell pairs of KM images.

Variations in firing conditions, firearm wear, and contaminants

cause variations in the tool marks imparted on the cartridge case

and the domain of the breech face impression area. These effects

and others cause variations in the size and quality of the common

valid correlation areas of a KM image pair comparison, which may

cause variations in the probability pKM of the cell pairs to qualify as

CMCs. For comparisons of KNM samples, these effects simply add

additional random factors to a comparison result, which is already

largely driven by random factors and which is unlikely to cause

major variations in the false positive cell probability pKNM.

Variation in the false negative cell probability (1 – pKM) is

consistent with the higher dispersion of the observed CMC

numbers for KM comparisons than predicted by the binomial

model (red curve in Fig. 6), which is based on the assumption of a

single value of pKM for all KM comparisons. To account to some

extent for these observations, we relax the assumption of the same

cell trial success probability pKM for all KM comparisons as

described below.

4.4. A beta-binomial probability model for the distribution of CMCs

In this approach, we still assume that a CMC image comparison

can be modeled as a set of independent Bernoulli trials

characterized by the same cell trial success probability. However,

we now allow the cell trial success probability p to vary between

image comparisons. Here we assume that the parameter p can be

modeled as a random variable with a beta distribution. The choice

Fig. 10. Conceptual diagram of the CMC probability mass functions for KM and KNM comparisons, FCMC and CCMC. To illustrate clearly the listed quantities, the schematic

depicts the discrete probability distributions as continuous density functions that overlap much more than they would be expected to in practice. The regions E1 and E2 under

the curves represent cumulative false positive and false negative error rates. For each “matching” conclusion, h � C, and “non-matching” conclusion, g < C, there are

probabilities for both “True” and “False” conclusions as demonstrated by the black dashed bars (which extend down to the x-axis) and the solid red bars, respectively.
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of the beta distribution has several advantages. The beta

distribution is defined by two parameters, a and b, which allow

for a wide range of distribution shapes. The domain of the beta

distribution is restricted to the interval [0,1], which makes it a

convenient distribution to model probabilities. In a Bayesian

framework, the beta distribution is a conjugate distribution of the

binomial distribution, yielding an analytical expression for the

resulting compound beta-binomial distribution [31]. Finally, the

resulting beta-binomial distribution can approximate the binomial

distribution to arbitrary precision when needed [32].

Like Section 4.2, we model an image correlation j with Nj

evaluated cell pairs as a sequence of Bernoulli trials, Xj1, . . . , XjNj,

which are independent from each other and have a common

success probability p = pj. The CMC number of the comparison, i.e.,

the sum of the trial outcomes Xji, is Yj, which for a given p = pj has a

binomial distribution Y jjpj � Bin Nj; pj

� �

. For M image compar-

isons, we have Y jjpj � Bin Nj; pj

� �

, for j = 1 to M, where pj now has a

beta distribution, i.e., pj � Beta a; bð Þ with positive a and b. The

probability mass function of the resulting beta-binomial random

variable Y for given values of N, a, and b is given by Ref. [32]:

P Y ¼ kjN; a; bð Þ ¼ Ck
N

B k þ a; N � k þ bð Þ

B a; bð Þ
; ð9Þ

where B a; bð Þ is a beta function with parameters a and b, and k is a

CMC value.

For the KM and KNM correlation results discussed in

Section 3, we obtained maximum likelihood estimates of the

parameters a and b using the algorithm described by Smith

[32]. The respective values are: âKNM ¼ 2:15 and ^bKNM ¼ 569:1 for

the KNM comparisons and âKM ¼ 6:55 and ^bKM ¼ 2:29 for the KM

comparisons. The modeled frequency distributions for the KM and

KNM CMC results are depicted by the curves in Fig. 6. The beta-

binomial model for the KNM comparisons is nearly indistinguish-

able from the respective binomial model. For the KM comparisons,

on the other hand, the beta-binomial model shows a significant

improvement in the ability to model the dispersion of the

experimental results.

4.5. Error rate estimation

The estimated false positive cell probability, p̂KNM for the

binomial model of the KNM cells and the parameters, âKM and ^bKM;

of the beta binomial distribution for the KM cells are inserted into

the respective models to estimate potential error rates for cartridge

cases fired from different firearms (KNM) and the same firearm

(KM) under similar conditions. Fig. 10 shows a conceptual diagram

for two CMC probability mass functions, FCMC and CCMC, for KM

and KNM topography pairs, respectively. As discussed in Sec-

tion 4.2, the probability mass function CCMC for KNM comparisons

is modeled as:

C CMC ¼ hjN; p̂KNMÞ ¼ BinðhjN; p̂KNMÞ ¼ Ch
N�p̂

h
KNM� 1 � p̂KNMÞ

N�h
:

��

ð10Þ

The cumulative false positive error rate E1 is given by the sum of

the probability mass function values CCMC for CMC values between

C and N:

E1 ¼
X

CMC¼N

CMC¼C

C CMCð Þ ¼ C CMC¼Cð Þ þ C CMC¼Cþ1ð Þ þ � � � þ C CMC¼Nð Þ

¼ 1 � C CMC¼0ð Þ þ C CMC¼1ð Þ þ � � � þ C CMC¼C�1ð Þ

� �

: ð11Þ

The cumulative false positive error rate E1 is determined by

three factors: the number of correlation cell pairs N in a

comparison, the numerical identification criterion C of the CMC

method, and the false positive cell probability p̂KNM of each

correlated cell pair estimated from Eq. (3a).

Similarly, the probability mass function FCMC for KM correla-

tions (Fig. 10) is modeled as:

F CMC ¼ gjN; a; bð Þ ¼ Ck
N

B g þ a; N � g þ bð Þ

B a; bð Þ
: ð12Þ

The cumulative false negative error rate E2 is given by the sum

of the probability mass function values FCMC for CMC values

between 0 and (C � 1):

E2 ¼
X

CMC¼C�1

CMC¼0

F CMCð Þ ¼ F CMC¼0ð Þ þ F CMC¼1ð Þ þ � � � F CMC¼C�1ð Þ: ð13Þ

We note again the approximations underlying the binomial

distribution model for the KNM image pairs:

1) the comparisons between cell pairs are independent from each

other, and

2) each cell pair comparison for the KNM images has the same

probability p = pKNM to qualify as a CMC.

The second condition is partially relaxed for the KM image

pairs with the introduction of the beta binomial distribution.

Each cell pair comparison within a KM image pair is still

assumed to have the same pKM value, but the beta binomial

distribution, with parameters a and b, is introduced to model

the distribution of pKM values for different KM image compar-

isons. The error rates estimated from the values of p̂KNM, â, and ^b

are random variables themselves and their uncertainties should

also be assessed [6,7].

The cumulative false positive and false negative error rates E1
and E2 associated with the data of Fig. 6 may be estimated from

Eqs. (11) and (13) using the known number of effective cells N (the

average number of evaluated cells in the image comparisons is

N = 26), the CMC identification criterion C (=6 here) and the

estimated parameters p̂KNM (Eq. (4)), â, and ^b. For the 717 KNM

comparisons, the cumulative false positive error rate is E1 = 6.1

� 10�10, which represents the sum of the CCMC probabilities

between 6 and N when using the binomial model. The cumulative

false negative error rate is E2= 2.1 �10�3, which represents the sum

of the FCMC probabilities between 0 and 5 when using the beta

binomial model. These error rates will vary depending on the

specific data population, the distribution models, and all the

parameters chosen for the correlation, such as the cell size. Error

rates for different models are discussed below.

4.6. Individual error rates for identifications and exclusions

Fig. 10 also illustrates the probabilities of true and false

conclusions by the dashed black bars (which extend down to the x-

axis but are partially hidden) and the solid red bars for specific CMC

values h and g. These probabilities can be used to calculate

likelihood ratios for various scores, that is, the ratio of the

likelihoods of obtaining the score under two competing hypothe-

ses (matching or non-matching samples) [25–28]. We define here

the individual false identification probability R1 that an identifica-

tion is false as the probability that an image pair is non-matching

when its CMC value appears in the matching region with a specific

score h (h � C), and conversely the individual false exclusion

probability R2 that an exclusion is false as the probability that an

image pair is matching when its CMC value appears in the non-

matching region with a specific score g (g < C). For our experiment,
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R1 can be estimated as:

R1 CMC¼hð Þ ¼
K � C CMC¼hð Þ

K � C CMC¼hð Þ þ F CMC¼hð Þ

; h � Cð Þ; ð14Þ

where K is the ratio of the sample sizes of KNM and KM topography

image pairs. In a Bayesian approach, K represents the prior odds

against obtaining a match in the current population of 40 breech

face images before conducting the forensic test. For this study, K is

equal to 717/63 (=11.38) under the condition that we randomly

select two cartridge cases from our materials set before comparing

their topographies to determine whether they are matching.

Conversely R2 can be estimated by

R2 CMC¼gð Þ ¼
F CMC¼gð Þ

F CMC¼gð Þ þ K � C CMC¼gð Þ

; ðg < CÞ: ð15Þ

The parameters, R1 and R2, could be useful when addressing

questions, such as “given the conclusion of identification based on

a CMC score h (h � C), what is the probability that the cartridge

cases were actually ejected from different firearms (individual

false identification error rate R1)?”, or “given the conclusion of

exclusion based on a CMC comparison score g (g < C), what is the

probability that the two cartridge cases were actually ejected from

the same firearm (individual false exclusion error rate R2)?” In

Bayesian terms, R1 and R2 represent posterior probabilities of

erroneous identifications and exclusions, respectively. The models

produce very little overlap between the KNM and KM distributions.

Even at the extrema of the experimental distributions, the

modeled values are small. The value of R1 for CMC = 9, computed

for actual cell number N = 25, is 3.3 � 10�13, and the R2 value for

CMC = 2, for N = 26, is 2.0 � 10�3. The small estimated value for the

individual false identification probability is largely due to the rapid

decline in the modeled probability mass function curve CCMC for

KNM comparisons, which matches well with the experimental

data (Fig. 6). The larger values for the individual false exclusion

probability follow from the fact that the distribution is expected to

be wider for the reasons discussed in Section 4.3. For realistic

databases with many entries of firearms and ammunition, even

when classified according to model and manufacturer, the overlap

of KM and KNM distributions can become significant and the error

rates will likely increase significantly.

5. Further analysis and results

5.1. Software development

We repeated the analysis with several changes to the

algorithms and correlation parameters. First, the images are no

longer down sampled, resulting in an average pixel spacing of

3.125 mm instead of 6.25 mm. Second, the low-pass and high-pass

filters are now, respectively, zeroth order and second order

Gaussian regression filters [33] to attenuate filtering edge effects

at the image domain boundaries. Their cutoffs are now, respec-

tively, 25 mm and 250 mm. Third, cell registration was improved

through a combination of Fourier-based and direct optimization of

the normalized cross correlation value at overlapping image areas

as a function of sample translation and rotation. Fourth, the effect

of spurious local registration optima was reduced by increasing

requirements for the minimum percentage of measured pixels in a

cell from 10% to 25% and by decreasing the size of the search

domain to �0.75 mm for sample translations. Finally, we

optimized the initial placement of the cells on the donut shape

of the reference image to ensure maximum coverage of the

respective sample domain, resulting in an increase of the average

number of evaluated cells.

Fig. 11 shows the results of the revised analysis. The chosen cell

size remains the same, but now comprises 150 � 150 pixels. The x–

y registration thresholds remain at �20 pixels (�62.5 mm

considering the pixel spacing is 3.125 mm). The search range of

registration angles and x-y displacements was limited to �45� and

�750 mm, respectively. The number of evaluated cells per

comparison varies between 26 and 35 cells, with an average of

31 cells. For the 63 KM cartridge pairs, the number of CMCs ranges

from 18 to 32, and for the 717 KNM cartridge pairs, the number of

CMCs remains in the same range (0–2) as that shown in Fig. 6.

A cutoff between declared matches and non-matches is chosen

at C = 10, midway between the extremes of the two distributions.

Using the binomial model with 31 cells, the estimated cumulative

false positive error rate for a CMC cutoff of 10 decreases to

E1= 5.6 � 10-19, and using the beta-binomial model, the cumulative

false negative error rate decreases to E2 = 1.2 � 10�3 with respect to

the analysis for Fig. 6 described in Section 4.5. The value of R1 for

h = 18, the lower extreme of the KM data, is 1.5 �10�35 (N = 32), and

the value of R2 for g = 2, the higher extreme of the KNM data, is

1.7 � 10�4 (N = 30). The KNM binomial distribution is based on an

estimated cell success probability of p̂KNM ¼ 2:58 � 10�3. The KM

Fig.12. Frequency distribution of KM image comparisons (Fig.11) for the fraction of

evaluated cells that were classified as CMC cells.

Fig. 11. Relative frequency distribution of CMC numbers for KM and KNM image

pairs obtained with modified software and correlation parameters. The red and

brown curves represent the binomial and beta-binomial distribution models for the

KM data. The overlapping blue curves represent the two respective models for the

KNM data. The models are estimated from the histogram data. Note that the

distribution models are discrete, with the connecting lines drawn for visualization.
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beta binomial distribution used is based on: âKM ¼ 6:24 and
^bKM ¼ 0:844.

5.2. Clustering

It is important to note that the image comparisons in our

experiments are not independent because each cartridge case and

slide was used in more than one comparison. This lack of

independence can lead to clustering effects in the experimental

frequency distributions. For example, if one cartridge case is poorly

marked, comparisons of this cartridge case with others fired from

the same slide are affected in a similar manner. Of the five

comparisons yielding a CMC number of 11 in Fig. 6, three involved

the same cartridge case and four involved the same firearm slide.

This clustering is currently not addressed by our models, which

assume independence of the various comparisons in our set. Note

that we do not expect clustering to be apparent with non-matching

distributions.

The KM data of Fig. 11 are plotted again in Fig. 12 with the

identity of the ten slides indicated by different colors. In Fig. 12, the

histogram abscissa represents the percentage of evaluated cells in

a correlation that were classified as CMC cells. There is clearly a

difference between images from different slides. For example, all

KM image comparisons involving samples from slides 1 or 3 yield

CMC numbers exceeding 90% of the number of evaluated cells. For

slide 7, on the other hand, half the comparisons yielded CMC

numbers between 55% and 70% of evaluated cells.

The differences are illustrated further in Fig. 13 by a scatter plot

of the KM images’ CMC fractions for each slide. The differences in

the spread of the CMC fractions from one slide to another suggest

differences in the capacity of the slides to impress similar

topographies on the breech faces. Clearly, the five images of slide

3 when compared among themselves to yield the ten KM CMC

fractions on the right-hand side of Fig. 13 have consistently higher

similarity than the five images of slide 7 whose ten KM CMC

fractions are shown on the left-hand side.

Fig. 14 shows one breech face impression topography, image A,

correlated with two other cartridge case topographies, B and C, all

fired from a firearm using slide 7. In the first correlation, A vs. B, all

32 evaluated cells were classified as CMC cells. In the second

correlation, A vs. C, only 19 cells were classified as CMCs. Some of

the failed cells can be explained by insufficient trimming of the

firing pin impression area on the inside edge in the upper right

quadrant of image C. However, overall, stronger matching features

are present in correlation A–B than A–C, as reflected by the

difference in the average normalized CCF values of the CMC cells of

86 % vs. 66 %.

The lack of independence is investigated further in Appendices

B and C. Appendix B shows a preliminary calculation that takes into

account potential correlations between cell pairs. Appendix C

shows results for independent image pairs.

5.3. Testing the models

We evaluated the models derived in Section 4 on a different set

of cartridge cases created by Weller et al. [34]. The cartridge cases

were obtained from another set of eleven firearm slides produced

by the same manufacturer using the same process as that of the

Fadul set described in Section 3. The Weller set consists of

95 Winchester cartridge cases, 9 cartridge cases each for

10 consecutively manufactured slides and 5 cartridge cases for

one extra slide that was manufactured using the same process but

not consecutively with the others. This resulted in 370 KM image

pairs and 4095 KNM pairs, a data set that is significantly larger than

the Fadul data of Figs. 6 and 11. The measurement procedure, image

processing parameters, and the CMC threshold parameters were

the same as those discussed in Section 5.1. For this dataset, the

domain of the trimmed breech face impressions typically consists

of thicker “donut” areas. This resulted in a larger number of

evaluated cells per comparison, ranging from 28 to 49 cells with an

average of 42 cells.

Fig.15 shows the relative frequency distribution of the observed

CMC numbers for the 370 KM and 4095 KNM image correlations.

Once again, the KNM and KM data are widely separated, and with

an identification criterion (C) equal to 10, there are no false positive

or false negative results. For the 370 KM cartridge pairs, the

number of CMCs ranges from 21 to 47; for the 4095 KNM cartridge

pairs, the number of CMCs again ranges from 0 to 2. Also shown in

Fig.15 are the modeled frequency distributions for the CMC results.

For the average number of evaluated cells, 42, the cumulative false

positive and false negative error rates are, respectively, E1
(h � 10) = 4.5 �10�21 and E2 (g < 10) = 7.5 �10�09.

We have also compared the Weller data [34] with models using

the same p̂KNM, â, and ^b parameter values that were estimated from

the Fadul data set discussed in Section 4.4. Fig. 16 shows good

agreement with the KNM data and reasonable agreement with the

KM data. For the average number of evaluated cells, 42, the

cumulative false positive and false negative error rates are

E1 = 1.8 � 10�17 and E2 = 2.2 � 10�4. This evaluation shows the

consistency of the results and suggests the general applicability

of the binomial model for describing KNM data and the

applicability of the beta binomial model for describing KM data

from these types of manufactured slides.

6. Summary and discussion

6.1. Summary observations on the test results

Reporting error rates for firearm identification is a fundamental

challenge in forensic science. We have developed a practical

statistical approach to estimating error rates based on the CMC

method. Initial results for correlations of the breech face

impressions on cartridge cases ejected from two different sets

of pistol slides of the same brand show wide separation between

the CMC scores of KM and KNM samples. The slides in each set

were consecutively manufactured using the same process. Models

Fig. 13. Scatter plot of CMC fractions for different slides using the data shown in

Fig. 12. The blue line represents the mean value for each slide. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version

of this article.).
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for the frequency distribution of the CMC scores show good

agreement with the experimental data and yield very small error

rates for erroneous classifications, in particular for false positive

identifications.

The error rate estimates are derived from models for the

probability distribution of the similarity metric, the CMC score, for

KNM and KM image correlations. The models were developed for

data from the smaller population, then applied successfully to the

larger population. The initial binomial model was based on two key

approximations: (1) the CMC cell trials in a comparison are

statistically independent, and (2) all the KNM cell pairs in our

population have, the same false positive probability pKNM. Barring

the presence of sub-class characteristics, which is unlikely for

sand-blasted breech face surfaces, these approximations seem

reasonable. The resulting estimated binomial distribution CCMC for

the respective CMC scores matches the experimental KNM data

quite well for both the Fadul and Weller datasets (blue lines in Figs.

6,11 and 15). From a legal perspective, the KNM distribution is

critical for ballistics identifications as it can be used to yield a

probability of false positives (false identifications), which are to be

avoided at almost any cost.

On the other hand, the binomial distribution for KM image

comparisons (red line in Figs. 6 and 11) shows a lower dispersion

than the experimental data, resulting in error rate estimates that

are too low. This is not surprising, as variations in firing conditions,

wear, and contaminants commonly cause variations in the tool

marks imparted on the cartridge cases. These effects cause

variations in the size and quality of the valid regions on matching

pairs, which, in turn, are likely to cause variations in the probability

pKM of a matching cell pair to be qualified as a CMC. The beta-

binomial model described in Section 4 allows the average cell trial

success probability p to vary from image comparison to image

comparison. This approach improves agreement between the

modeled and experimental KM CMC distributions (brown lines in

Figs. 6 and 11).

We emphasize that the estimated error rates in this report are

specific to the sets of firearms studied here and are not applicable

to other firearm scenarios. Furthermore, the presented models do

not address correlations between the experimental comparison

results due to the use of a sample image or firearm slide in more

than one comparison. Some differences between the modeled and

experimental results, such as the CMC = 11 values in Fig. 6, might be

Fig. 14. Top-comparison of the breech face impression of cartridge cases A and B fired from a firearm using slide 7. Bottom-comparison of the breech face impression of

cartridge cases A and C fired also from a firearm using slide 7.
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attributable to this effect. We discuss this issue further in

Appendices B and C.

6.2. A scenario for case work

The results reported here were derived from a small data set of

780 image pairs and tested successfully on a larger data set of

4465 image pairs. These are far smaller populations than those

anticipated in real forensic science case work. In addition, the

question we posed is necessarily different from the issues

associated with the traditional prosecution and defense

hypotheses in forensic science case work. The question we posed

was: If two cartridge cases are selected randomly from a set of

cartridge cases that have been characterized for their breech face

topography, can we compare the topographies and accurately

identify whether the two cartridge cases were fired by the same

firearm and estimate the error rate?

We believe yes, this has been demonstrated for the specific

population here. However, can such a method ever be applied to

real case work where potentially hundreds of thousands of

firearms of different manufacture could be considered as possible

sources of a piece of evidence in a crime? Because of the inherent

Fig.16. Relative frequency distribution of CMC numbers for KM and KNM image pairs of the Weller dataset. The brown curve represents the beta-binomial distribution model

for the KM data, using parameters also estimated from the Fadul data. The blue curve represents the binomial model for the KNM data. Note that the distribution models are

discrete, with the connecting lines drawn for visualization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.).

Fig. 15. Relative frequency distribution of CMC numbers for KM and KNM image pairs of the Weller dataset [34]. The red curve represents the beta-binomial distribution

model for the KM data. The brown curve represents the binomial model for the KNM data. Note that the distribution models are discrete, with the connecting lines drawn for

visualization. The right-hand scale for the KM data is magnified by a factor of four to show differences more clearly.
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variability of the firing process, we do not expect evidence from

firearms to exhibit the extremely low error rates that are

characteristic of DNA evidence [35]. However, the wide separation

of the KM and KNM image correlations and the extremely small

false positive error rates calculated from the models suggest the

feasibility of applying the CMC method to a large number of

firearms manufactured under similar conditions and producing

correlation results to support identification, if not exclusion,

decisions. The probability models for the results estimated from

one firearm set were consistent with the distributions observed for

the second set, indicating consistency of the statistical models and

estimated error rates. In general, the shape of CMC distribution

curves for KNM image pairs is expected to be narrow and stable.

The extremely small false identification error rates calculated

from the models and population sizes discussed here suggest that

it would be feasible to scale up the statistical procedure to case

work with large population sizes and still arrive at reasonable and

usefully small false identification error rates. However, practical

case work would require (1) a database with accurate counts of

firearms manufactured by different methods with different class

characteristics, (2) data like Figs. 11 and 15 for different types of

firearms, and (3) a statistical procedure to combine data sets from

different types of firearms from different manufacturers – one

could not generalize the results seen here to other types of

manufactured firearms.

6.3. Future work

The work reported here is a demonstration of concept for the

objective CMC method. Studies with larger databases, including

direct comparisons with manual evaluations, will be required to

demonstrate feasibility of the CMC method for crime lab casework.

We are working to participate in black-box studies of firearms

experts like that of Baldwin et al. [9], which was favorably

reviewed by a recent report of the President’s Council of Advisors

on Science and Technology [36]. This could yield a comparison of

error rates of the CMC method and of subjective methods.

We are also working to test the CMC method and error rate

procedure on different sets of consecutively manufactured fire-

arms, where the fabrication process leaves stronger common tool

marks than the sand blasting process studied here. We have begun

to adapt congruent matching methods to firing pin image

correlations [20] and to 2D bullet image correlations. We are also

working on a procedure based on international standards [37] to

incorporate uncertainty statements into the reported error rates,

and we aim to scale the approach to be usable with large databases

of forensic samples.

We envision a time when ballistic examiners can input either

topographies or optical intensity images into a program that

automatically conducts correlations, and generates objective

conclusions (declared match, for example) and error rate

Fig. 17. Experimental relative frequency distributions of registered cell pairs for the KM (red) and KNM (blue) correlations with respect to the identification parameters: (A)

CCFmaxwith a threshold TCCF= 50%; (B) u with Tu = � 6�; (C) x with Tx = �20 pixels (or � 0.125 mm); and (D) y with Ty= �20 pixels (or �0.125 mm). The KM (63 pairs) and KNM

(717 pairs) distributions are each scaled to their sample size. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.).
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estimates. The CMC method and statistical procedure can provide a

scientific foundation and practical methods to do this.
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Appendix A. Distributions for individual identification

parameters

It is instructive to plot the experimental frequency distributions

of registered KM and KNM cell pairs with respect to each CMC

identification parameter and to estimate the respective cell trial

success probabilities. Fig. 17 shows the experimental frequency

distributions of registered cell pairs for KM (red) and KNM (blue)

correlations with respect to each of the four identification

parameters: CCFmax (Fig. 17A), registration angle u (Fig. 17B), and

x-, y-registration distances (Fig. 17C and D). The thresholds TCCF, Tu,

Tx, and Ty are also shown.

Although there are large overlaps between the KM and KNM cell

distributions for each parameter, combining all four parameters

yields the significant separation between the CMC distributions of

KM and KNM image pairs shown in Fig. 6. The combined false

positive and false negative probabilities, pKNM and (1 � pKM), for

each correlated cell pair can likewise be estimated by combining

the estimated false positive and false negative frequencies

associated with each of the four identification parameters (CCFmax,

u, x and y) considering any correlation between them. First, the

number of KNM cell pairs that pass the TCCF threshold (CCFmax

� 50% for the test case) are counted and compared with the total

number of cell pairs to derive an estimation for the individual

probability pKNM(CCF). Then only the cell pairs passing the TCCF test

are included in the conditional frequency distribution for the next

parameter u, from which the conditional probability pKNM(u|CCF) is

estimated, and so on [15]. The false positive and true positive cell

trial probabilities associated with all thresholds estimated in this

way are the same as those calculated by Eqs. (2) and (3).

Appendix B. Relaxing the assumption of independence of cell

pair comparisons

In Section 4.2, it was assumed that the cell pairs in an image pair

are independent of each other. That is, the random variable X,

which represents the outcome of the CMC method for a cell pair

comparison is independent of the random variables for other cell

pair comparisons in the image pair. Therefore, for an image with N

cell pairs, we assumed that the sequence of X1, . . . , XN is a

sequence of Bernoulli trials. However, in practice, cell pairs may

not be independent in general. To address this we use a model for

dependent Bernouilli trials proposed by Bahadur [38], which is

sometimes called the Bahadur–Lazarsfed model [39]. The model

allows the Bernoulli trials, X1, . . . , XN to be correlated while P

(X = 1) = p and P(X = 0) = 1 � p for each of {X1, . . . ,XN.}. For

simplicity, we only consider the second order correlation and

assume that the correlations are symmetric [38]. In this case, the

probability mass function of the sum of the sequence of the

correlated X’s denoted by Y is expressed by

PðYÞ ¼ P½1	ðYÞ 1 þ rð2Þg2ðY; pÞ
� �

; ð16Þ

where P[1](Y) is the probability mass function of a binomially

distributed random variable discussed in Section 4.2 with the

parameters p and N, and r(2) is a parameter characterizing the

second order correlation of the correlated X’s. The function g2(Y,p)

is a second order polynomial in Y. In this case, Y has a correlated

binomial distribution.

For the KNM comparison results of Fig. 11, for example, we

obtain maximum likelihood estimates (MLE) of the parameters

p̂KNM = 0.00258 and r̂ð2Þ = 0.000972. The inclusion of correlations

does not significantly change the result for p̂ or any conclusions

drawn about false positives. This is illustrated by Fig. 18 where the

model that includes the effect of correlations is indistinguishable

from the model for the original binomial distribution.

For the KM distribution, the MLEs are p̂KM = 0.8786 and

r̂ð2Þ = 0.0470. The effect of correlations produces a significant

change in the model for the KM distribution, as is illustrated in

Fig. 18.

Appendix C. Exploring the assumption of independence of

image pair comparisons

In Section 4.2, we make the assumption that all the image pairs

are independent even though each image is used more than once.

Image A, for example, is compared with images B, C, etc. We

provide here an alternative to this assumption by considering

subsets of the image-pair population in which each image is used

only once, that is, A is compared with B, C is compared with D, etc.

This results in a much smaller sample size. For the Fadul set [19],

there are 18–20 independent KNM pairs and 17 independent KM

pairs depending on how the images are paired up. Note that such a

sample is consistent with the original sample because it is a subset

of those data; however, the value of probability p calculated from a

small sample of KNM pairs varies depending on how the images

are paired up. Fig. 19 is a semilog plot of calculated values for pKNM
for 100,000 reshuffled samples of the independent image pairs.

The mean value for p̂KNM is 2.57 � 10�3, which is consistent with

Fig.18. CMC distribution data of Fig.11 and comparison of distribution models with

and without dependence. The brown curve is the KM beta binomial plot of Fig. 11;

the red curve is the KM dependent binomial model; the indistinguishable blue

curves are the KNM binomial and dependent binomial models. (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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the calculated value for p̂KNM of 2.58 � 10�3 for the whole data set

calculated in Section 5.1 for Fig. 11. An upper limit, given by the

value, below which 95% of the p values lie is equal to 6.39 � 10�3

and is shown in green. The E1 value corresponding to that p value is

4.45 �10�15, several orders of magnitude larger than the value of

5.6 � 10�19 obtained in connection with Fig. 11, but still extremely

small.

Appendix D. Sampling issues

The error rate estimates discussed in Section 5.1 have an

uncertainty due to many sources of variation. These may be

associated with the accuracy of the topography images, the choice

of the CMC procedure and the choices of its parameters, the

assumptions underlying the distribution models, and the limited

sample of comparison results used to calculate error rates.

Development of an uncertainty budget encompassing all the

significant sources of error is beyond the scope of the present

paper, but is an important topic that we and others will be

researching.

We emphasize here only the last factor related to the sample

population, which was previously discussed by Petraco et al. [7].

An estimate of the sample size limitations can be obtained using

bootstrapping. Bootstrapping [40] is a statistical technique where

either the data or a model of the data is resampled with

replacement to generate a new dataset. This resampled dataset

is then used to obtain a new estimate for the parameter of interest,

after which the process is repeated. The variability of the thus

obtained parameter values is then used as an estimate for the

variability that would be observed if new datasets were collected.

Fig. 20 shows the result of a bootstrapping analysis for the false

positive cumulative error rate E1, estimated from the Fadul KNM

dataset results of Fig. 11 using the binomial model for the CMC

distribution, N = 31, and a CMC criterion of 10. The figure shows a

histogram of 10,000 error rate values E1, each calculated from a

resampled dataset obtained by randomly drawing, with replace-

ment, 717 KNM comparisons from the original dataset. Moreover,

this is a blocked bootstrapping analysis to estimate firearm

clustering effects. Here, the resampling is done by randomly

selecting from the ten firearms and including all the results from

each firearm selected until the population of 717 KNM image

comparisons is reached. This provides an estimate of the potential

uncertainty due to sampling effects. Fig. 20 indicates that 95% of

the calculated error rate values are less than or equal to

3.00 � 10�18.

Although bootstrapping yields insights into the variability of

the error rate estimate, which in turn can be used to select a more

conservative error rate, it does not replace the need for additional

data. A key assumption underlying the bootstrapping approach is

that the variability due to resampling the dataset is, in

approximation, similar to the variability that would be observed

when selecting new datasets from the population of all compar-

isons of interest. This, in turn, requires that the original dataset

represents a reasonable approximation of this population. Our

conclusion is that sampling effects increase the false positive error

rate calculated here by amounts that are insignificant on an

absolute scale.
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